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Abstract. The paper asks whether R&D’s productivity impacts are conditional on the gap of a
plant’s productivity from the industry’s technological frontier. The results show that a plant’s
own R&D and a parent firm’s R&D have a positive productivity impact. The impact of a plant’s
own R&D decreases as the gap from the industry’s technological frontier grows. Furthermore,
the productivity impact of other firms’ (geographic) distance-weighted R&D is, on average,
positive. However, this impact increases as the gap from the technological frontier grows.
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1 Introduction

The paper explores the productivity impacts of R&D by using plant-level data. We examine the
impacts from a plant’s own R&D and that of other firms’ R&D. Other firms’ R&D is regarded
as a source of existing knowledge. Firms use this source to improve their own productivity
through spillovers (technological externalities) or through the market by means of pecuniary
externalities.1 We also study the geographical proximity of knowledge spillovers. Specifically,
the paper tests whether the productivity impacts of a plant’s own R&D and that of other firms’
R&D are conditional on the plant’s efficiency. Efficiency is measured as the gap between a
plant’s productivity and the industry’s technological frontier. Furthermore, our empirical
approach allows us to detect convergence towards the technological frontier.

* The paper is a part of the project ‘Regional productivity growth in Finland’ (Tuottavuuden alueellinen kasvu
Suomessa) financed by TEKES (National Technology Agency of Finland). The matched data that are used to produce
the results can be accessed on site at the Research Laboratory of the Business Structures Unit of Statistics Finland. The
authors would like to thank three anonymous referees for valuable comments and suggestions that have greatly improved
the paper. An earlier version of the paper was presented at the EARIE Annual Conference, Toulouse. We are grateful to
the seminar audience for comments. Paul A. Dillingham has kindly checked the English language. The usual disclaimer
applies.

1 Scitovsky (1954) and Ottaviano and Thisse (2001), for example, define externalities in this way.
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A plant’s own R&D and its parent firm’s own R&D capture the efforts to create new
knowledge. However, the firm’s own R&D also strengthens absorptive capacity (Cohen and
Levinthal 1989). Insofar as the firm’s own R&D captures the efforts to innovate, its positive
impact on productivity is greatest close to the industry’s technological frontier.2 Other firms’
R&D stock, on the other hand, captures the potential to absorb from the other players in the
market. This activity is based on imitation. Its productivity impact is, therefore, greatest far away
from the industry’s technological frontier.

Griffith et al. (2004), Acemoglu et al. (2006) and Vandenbussche et al. (2006) test these
hypotheses by using aggregate data on countries and industries. Griffith et al. (2004) examine
whether the productivity impacts are conditional on the gap from the technological frontier.
They provide evidence for the importance of R&D in increasing possibilities of technology
transfers through the build-up of absorptive capacity. They use a panel of industries across
twelve OECD countries. Acemoglu et al. (2006) show that R&D intensity increases as a country
approaches the world’s technology frontier. This result points out that investments in innovative
activity benefit efficient firms more than other firms. Vandenbussche et al. (2006) explain total
factor productivity by dividing the labour force into groups according to the educational level.
They discover that the productivity impact of the highly educated decreases as the gap from the
technological frontier grows. For the less educated labour force the finding is the opposite.
Vandenbussche et al. (2006) argue that this pattern emerges, because the highly educated
innovate and the less educated imitate. However, this argument is somewhat questionable,
because imitation typically requires considerable investments in human capital.

In a related strand of research, Girma (2005) studies the productivity impacts of foreign
direct investments (FDI). Girma (2005) uses firm-level data, and examines whether productivity
impacts differ as a function of the firm’s gap from its technological frontier. The results show
that the productivity benefit of FDI increases as the gap from the technological frontier grows
until the threshold level. Pessoa (2007) points out that FDI has different effects on the host
countries, depending on the social capability of the host economy, as well as the familiarity of
domestic firms with products and technology of a given multinational corporation.

In addition to empirical research, theoretical literature has investigated the implications of
relative efficiency on the orientation of firms’ activities and on the use of resources. Being close
to the industry’s technological frontier, one cannot learn much from others. This means that one
has to concentrate on innovation rather than on imitation (Acemoglu et al. 2006; Vandenbussche
et al. 2006). Specifically, the literature has stressed the relatively high requirements for the
absorption of external knowledge (Cohen and Levinthal 1989). Despite this, the adoption of
existing knowledge is almost always much easier than the creation of completely new knowl-
edge (Vandenbussche et al. 2006).

The tacitness of knowledge implies that technological externalities are geographically
restricted (Breschi and Lissoni 2001a, 2001b; Morgan 2004). However, localized knowledge
spillovers are not automatic to other local firms, but rather they take place within a complex web
of social networks between workers. Tacit knowledge is not always local, either. Bunnell and
Coe (2001) argue that non-local interconnections can sometimes break the geographical limits
of innovative actions. They stress that this occurs through the increasing mobility of individuals
and extra-local transfers of culturally specific knowledge. Faulconbridge (2006) makes an
important distinction between knowledge transfers and social production of knowledge. Even
globally stretched learning involves the predominantly social production of new knowledge. The
fact that it cannot be delimited to the local scale constitutes an argument against the conventional
tacit-local and explicit-global paradigm. Furthermore, Torre (2008) presents the hypothesis
of temporary geographical proximity which undermines the necessity for the permanent

2 This pattern was discovered by Vandenbussche et al. (2006), who examined the productivity impacts of education.
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co-location of innovative units. This especially concerns larger firms. However, these aspects do
not nullify the importance of geographic distance. They reveal additional nuances about the role
of knowledge spillovers and the influence of location.3

The evidence supports the importance of geographical proximity despite the fact that global
interaction is increasing rapidly. Baldwin et al. (2008) discovered in their study on productivity
that agglomeration in terms of the number of other firms within the same region is relevant only
when the distance is below 10 kilometres. Graham (2009) analysed the demand of inputs and
also discovered that where localisation economies exist, they tend to disappear rapidly as
distance increases. The earlier studies (e.g., Jaffe et al. 1993; Keller 2002; Orlando 2004; Lehto
2007) also support the importance of geographical proximity of knowledge spillovers. We
follow this literature in our model specifications. In particular, by using Finnish data, Lehto
(2007) discovered that geographical proximity reinforces the productivity impacts of external
R&D.4 Finland is characterized by the regionally specialized high- or low-skill clusters (Huovari
and Lehto 2009). This emphasizes the importance of local sources of information.

We contribute to the literature by studying the impacts of R&D in the framework that
specifies a unit’s position in relation to the industry’s technological frontier at the plant level.
The paper analyses how the gap from the frontier affects the productivity impacts of R&D.
Specifically, we ask whether the gap from the technological frontier affects the productivity
impacts of the plant’s own R&D and external R&D differently. We define the industry’s
technological frontier according to the highest (total factor) productivity in the set of units
considered, following, for example, Acemoglu et al. (2006) and Vandenbussche et al. (2006).
By using plant-level data, we are able to define the industry’s technological frontier more
accurately. We are also able to control for the impacts of a plant’s own actions and the impacts
of other plants’ R&D. These impacts have been ignored in the existing literature that uses
country- and industry-level data. Furthermore, we introduce a theoretical analysis that elabo-
rates the productivity dynamics. The hypotheses capture the productivity impacts of R&D from
several different sources and the interaction of these impacts and a plant’s gap from the
industry’s technological frontier.

The paper evaluates the impacts of R&D on both total factor productivity and labour
productivity in Finnish manufacturing. We use a large plant-level data set over the period
1995-2005. Firms’ R&D is allocated to plants that actually carry out R&D projects. This makes
it possible to explain a plant’s productivity by means of its own R&D and (geographic)
distance-weighted R&D of a parent firm’s other plants and other firms in the relevant market.
The R&D variable that we use is the R&D stock. This allows us to take into account the past
R&D investments that affect productivity (Rouvinen 2002).

The structure of the paper is as follows. Section 2 analyses the productivity dynamics in a
theoretical framework and presents the hypotheses. Section 3 describes the data. Section 4
introduces the empirical specification and its variables. Section 5 reports the results. Section 6
examines the robustness of the estimates. The last section concludes with policy lessons.

2 Theoretical framework and hypotheses

We examine the productivity dynamics in the setting in which a plant’s relative efficiency at the
starting point is allowed to vary. The unit costs related to the project are specified as a function

3 Koo and Kim (2009) observe that knowledge commercialization and retention factors such as entrepreneurship and
industry structure play significant roles in the regional R&D appropriation mechanism. Webber et al. (2009) provide
evidence about the impact of peripherality on regional productivity differentials.

4 This impact was identified by dividing the external R&D into different pools according to both geographical and
technological proximity.
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of the gap from the industry’s technological frontier. The project either uses existing knowledge,
being imitative, or creates new knowledge, being innovative. The unit costs of an additional
output generated by the project and the unit income from the project vary along the vertical axis
in Figure 1. A plant’s productivity at the starting point varies along the horizontal axis. The
vertical line F describes the industry’s technological frontier and i gives the rank of a project,
which is carried out within a given period of time. The curve MC(i) (i = 1 or 2) describes the unit
marginal costs to adopt existing knowledge to produce an additional unit of output, which is
represented by the horizontal line M. The price of output is normalized to be one. The fact that
the curve MC(2) is above MC(1) illustrates that unit costs become higher when a plant makes
several leaps in productivity within a given period of time. The stickiness of information (see
Von Hippel 1994), and the learning frictions produce this. The curve DC(i) describes the
additional unit costs of innovative activity when an additional unit of output, illustrated by line
M, is produced.

MC(i) bends upwards because a low productivity plant has much more to learn from others
than a high productivity plant. A plant can learn from other firms whose productivity is at a
higher level and which are within the reach of its efforts to increase productivity. The latter
requirement refers to the stickiness of technology transfers and its effect on the geographical
limits of knowledge spillovers. Breschi and Lissoni (2001a, 2001b) and Morgan (2004) argue
that the tacit, complex and ambiguous nature of transferred information creates geographical
limits. As a plant approaches the industry’s technological frontier, available knowledge for the
productivity advances becomes scarcer and MC(i) bends upwards. When a plant innovates, it
shifts the technological frontier outwards to the position F′. The possibilities for innovating
plants to shift the technological frontier improve when a plant approaches the technological
frontier. The slow learning explains why it is costly to make a big leap from backwardness to the
industry’s technological frontier. Therefore, DC(i) is downward-sloping.

The production of new knowledge is profitable in the range that is to the right of point A. In
the range that is to the left of point C it pays to imitate. Thus, in the range between points A and
C, it is profitable both to innovate and imitate. This corresponds to Lemma 1 in Vandenbussche
et al. (2006). The intersection point A could be on the right-hand side of point C, representing
a development trap. Firms whose productivity is originally low would then never reach the

Productivity

Unit costs and income

F F'

M

DC(i)
MC(2) 

MC(1)

A B C

Fig. 1. An illustration of convergence to the industry’s technological frontier
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industry’s technological frontier. This type of argumentation, which puts an emphasis on
technology, has recently become more common in the growth theory. For example, Feyrer
(2008) stresses the central role of the adoption of technology and the creation of new technology
in economic progress.5

At least in theory, the slow catching-up in Figure 1 does not always prevail. Brezis et al.
(1993) proposed the hypothesis about leapfrogging in the context of a major technological
breakthrough. For the initially leading unit the adoption of new technology – which becomes
profitable only after a while – is more expensive than for a challenger. Leapfrogging, by
definition, describes situations in which a less developed unit goes beyond the forerunners (Chen
1999; Amiti 2001). The evidence shows that leapfrogging in which technology is transferred
from industrialized countries to less developed countries may sometimes occur, for example, in
the energy sector (Goldemberg 1998; Steinmueller 2001).6 Considering the situation inside a
single country (e.g., Finland), the prospects for big leaps forward are limited. In particular, the
persistent regional differences in Finland point out that the slow catching-up is clearly a
dominating pattern (Böckerman and Maliranta 2007). We explore this hypothesis empirically.

In the empirical part of this study we test the impacts of a plant’s own R&D and other firms’
R&D on the plant’s productivity. We also evaluate the productivity impact of R&D of the parent
firm’s other plants. The R&D variables that we use are R&D stocks, and all R&D outside the
plant in question is weighted according to the geographical proximity. Other firms’ R&D stock
is regarded as a source of existing technological knowledge that can be utilized in a plant that
is being considered. Thus, in the framework of Figure 1, MC(i) describes the costs which the
utilization of other firms’ R&D stock creates. On the other hand, a plant’s own R&D stock
represents either the potential to absorb existing knowledge or the total effort to produce new
knowledge (see Cohen and Levinthal 1989). The use of a plant’s own R&D is conditional on the
gap from the industry’s technological frontier. Consequently, the most advanced plants use their
own R&D to create new technology and push the industry’s technological frontier outwards. We
argue that the impact of a plant’s own R&D typically follows the curve DC(i) in Figure 1. It is,
however, possible that the behaviour follows the curve MC(i), at least when the gap from the
technological frontier is relatively large. Owing to this, the productivity impact of a plant’s own
R&D can be a nonlinear function of the gap from the technological frontier.

We test the following hypotheses empirically:

1. A plant tends to converge towards the industry’s technological frontier;
2. A plant’s own R&D has a positive impact on the plant’s productivity;
3. The productivity impact of the plant’s own R&D decreases as the gap from the industry’s

technological frontier grows;
4. The impact of R&D in the parent firm’s other plants is positive on the plant’s productivity;
5. Other firms’ R&D positively contributes to the plant’s productivity;
6. The productivity impact of other firms’ R&D increases as the gap from the industry’s

technological frontier grows.

Vandenbussche et al. (2006) observed that all plants tend to converge towards the industry’s
technological frontier. Therefore, we propose in Hypothesis 1, that in Finland all firms have
good opportunities, despite their location and their special field, to use available knowledge to

5 Howitt and Mayer-Foulkes (2005), who examined growth that is conditional on the gap from the technological
frontier, obtained the result according to which the economies may settle down into three different stable equilibria. The
economies that are originally not so advanced will never converge to the technological frontier.

6 It is important to note that the rapid catching-up of less developed countries is seriously restricted by inadequacies
in their infrastructure, inefficient technical literacy, or the absence of a critical mass of scientists and engineers to exploit
technology, as the World Bank (2008) reports (see also Gallagher 2006).
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improve their productivity. This knowledge is not included in the firms’ own R&D stocks. The
plant’s own R&D is also expected to improve the plant’s productivity, as Hypothesis 2 states.
The fact that Finland is rather close to the global technological frontier in several manufacturing
industries (see Scarpetta and Tressel 2004) motivates Hypothesis 3, which presumes that the
plant’s own R&D is, on average, used for innovative activity. Hypothesis 3 allows that a plant
– whose productivity is low – uses its own R&D for imitation. For those plants the return to
imitation increases as the gap from the technological frontier grows. It is also useful to note that
if leapfrogging dominates in the catching-up process the incentives to invest in the plant’s own
R&D are particularly strong for an inefficient plant and Hypothesis 3 is not verified. Hypotheses
4 and 5 are based on the idea that external R&D is used to absorb existing knowledge. The
findings in Vandenbussche et al. (2006) lead us to expect this.

3 Data

We use two main sources of data by Statistics Finland over the period 1995-2005. The first one
is based on the Annual Industrial Statistics surveys that basically cover all manufacturing plants
owned by firms that have no fewer than 20 persons. Output is measured by value added for the
purpose of calculating the labour and total factor productivity indicators. For the total factor
productivity indicator, we use capital stock estimates, which are constructed from each plant’s
past investments by using the perpetual inventory method.

The second source of data consists of R&D surveys that incorporate information about R&D
expenditures at the firm level. The data also contain the municipality-level distribution of the
firm-level R&D.7 The R&D measure describes in-house R&D. Therefore, R&D that is bought
from outside labs is not included. By using the plant and firm identifiers of the Business Register
of Statistics Finland, we construct an algorithm that allocates firm-level R&D expenditures to
plants. The algorithm very closely resembles the one in Lehto (2007). Most firms in the
manufacturing sector consist of only one plant. This eases the allocation. In the case that the firm
has only one plant in a municipality in which the firm has reported that it has pursued R&D
activities, the firm’s R&D is allocated to this plant. For other plants, we have utilized informa-
tion about the geographical location of plants and information about the geographical location
of R&D expenditures at the municipal level, as recorded in the R&D surveys. We have also taken
advantage of the industry structure, the employees’ educational levels and the intended use of
R&D expenditures.

We have interpolated the R&D expenditures for those plants that are not included in the
R&D surveys in all the years. Nominal R&D expenditures are converted to real R&D expen-
ditures by using the average earnings index, because the labour costs of highly educated
employees are an important component of overall R&D expenditures. We accumulate R&D
stock from real R&D expenditures by using the same method as Lehto and Lehtoranta (2004).
We assume the 15 per cent depreciation rate for R&D stock, following Orlando (2004). R&D
stock is a particularly useful measure for the firm’s stock of knowledge, because it is not nearly
as volatile as R&D expenditures from year to year. R&D expenditures are almost exclusively
allocated to the firm’s production sites. R&D expenditures are therefore not typically allocated
to research laboratories that specialise in research and development. Despite the fact that the
analysis is focused on the production sites of manufacturing plants, the R&D expenditures of all
plants in all industries are taken into account in the construction of other plants’ R&D stocks.8

7 There were 432 municipalities in 2005.
8 Lehto (2007) discovered that geographical proximity is more important for knowledge spillovers than industrial

proximity.
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4 Specification of the variables and modelling approaches

4.1 Productivity

We use a logarithmic multilateral index for total factor productivity (tfp). It assumes cost
minimization (Caves et al. 1982).9 The index – in which a plant under consideration is compared
with a hypothetical plant in the same (three-digit NACE) industry – is for a plant h in firm i in
year t:

tfp
Q H

Q H

S S K H

K Hhi t
hi t hi t hi t hi t hi t

,
, , , , ,ln ln= ⎛

⎝⎜
⎞
⎠⎟ −

+( ) ⎛
⎝⎜

⎞
⎠2 ⎟⎟ , (1)

where

Qhi,t = value added in real prices;
Hhi,t = labour input measured by the hours of work;
Shi,t = the share of capital costs of the total costs; and
Khi,t = fixed capital in real prices.

The variables Q, H, S and K denote the geometric means at the three-digit NACE level. We
calculate the capital rent Chi,t for a plant h in firm i in year t by using the user cost formula:

C P Rhi t hi t t t hi t, , , ,= × + −( )δ π

where:

Phi,t = the price of capital calculated by Statistics Finland
Rt = the interest rate for a five-year bond;
dt = 0.06 (the depreciation rate for manufacturing industries);10 and

πhi t hi t hi tP P, , ,log= ( )−1

The capital costs UChi,t for a plant h in firm i in year t are computed from the equation
UChi,t = Chi,t ¥ Khi,t. Thus, we obtain for Shi,t:

S
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where Whi,t are the total labour costs.
For the logarithmic labour productivity lphi,t we use the formula:
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9 See also Ilmakunnas and Maliranta (2004).
10 This is almost the same as the estimated depreciation rate for fixed capital in U.S. manufacturing (0.059) (Nadiri

and Prucha 1996).
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4.2 R&D variables

Other plants’ R&D stock constitutes a source of knowledge that can be imitated. Because of the
localized nature of knowledge spillovers, we take geographical proximity into account in the
construction of the variable for other plants’ R&D stock. It is shown below how we construct
this variable for each plant by using a version of the gravity model by Harris (1954). We treat
other firms’ plants and the parent firm’s other plants separately.

The R&D stocks in other firms’ plants are weighted by the inverse of geographic distance.
However, we also assume the threshold distance of 10 kilometres, because without this the
relative weights would decrease very fast as the distance between plants increases. Thus, the
R&D that is located in the same commuting area would obtain unrealistically small weight. With
the threshold distance the weight coefficient for plant j’s R&D stock for plant h is defined as

1

10dhj + , where dhj is the distance between plants h and j. We use the road distance in kilometres

between the municipalities where plants h and j are located.11 Furthermore, for those plants that
are located in the same municipality, we assume the internal distance to be 7 kilometres.12

Therefore, the distance-weighted R&D stock of other firms’ plants for a plant h in firm i is
defined as follows:

RDE
d

RDShi
hj

jk
j

n

k
k i

m

=
+( ) ( )

==
≠

∑∑ 1

1011

, (3)

where RDSjk = plant j’s own real R&D stock in a firm k.
We have studied the robustness of the results with respect to the distance-weight. Replacing
1

10 + dhj
by, for example,

1

dhj
has a minor influence on the estimation results. The coefficient for

the plant’s own R&D turns out to be only slightly smaller. Tripling in Equation (3) the weight
of other plants’ R&D which is located in the same municipality does not alter the results much
either. Therefore, the estimates are not sensitive to this assumption.

For a plant h in firm i the external R&D stock in the parent firm i’s other plants is also
distance-weighted. It is obtained from:

RDE
d

RDShi
hj

ji
j
j h

n

=
+( ) ( )

=
≠

∑ 1

101

,

where RDSji = plant j’s own real R&D stock in a parent firm i.

4.3 Determination of the industry’s technological frontier

Let maxtfpk,t be the maximum for the logarithmic total factor productivity index (1) in industry
k in year t. We use the three-digit NACE classification for industries. Suppose that a plant h in

11 The road distance data originates from the Finnish Road Administration. It is the distance between the economic
centres of municipalities via main roads.

12 The internal distance of 7 kilometres is suitable, based on the experiments with the data. It is smaller than the
distances between the major neighbouring cities in the capital district. The distance between Helsinki (the largest city)
and Espoo (the 2nd largest city) is 18 kilometres, between Helsinki and Vantaa (the 4th largest city) it is 16 kilometres
and between Espoo and Vantaa the distance is 28 kilometres. We have explored the robustness of the results regarding
the internal distance threshold of 7 kilometres in detail. The estimates are not sensitive to the use of the internal distance
threshold of 7 kilometres.
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firm i belongs to industry k. We assume that the productivity dynamics is conditional on a plant’s
productivity gap from the industry’s technological frontier. For a plant h in industry k and in firm
i the gap is:

gap maxtfp tfphi t k t hi t, , , .= −

4.4 Specifications of the model

Theoretical grounds for the empirical model are based on Acemoglu et al. (2006) and Vanden-
bussche et al. (2006). Vandenbussche et al. (2006) formulated their model in terms of low-
skilled or high-skilled labour. We take the heterogeneity of labour input into account by
assuming that two types of projects are carried out. An innovative project uses skilled labour. In
contrast, in the project that utilizes existing knowledge, the requirement for the skill level of the
workforce is not particularly high.

The empirical specification for productivity growth is as follows:

TFP TFP RDS RDMhi t ih t hi t
dist

hi t
hi t

, , , ,
,= × × ×− −

+ ×( )
−

−
1 1 1

1 2 1α β β χ11 2 1
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+ ×( )
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× ( )∑

χ

η θ
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hi t k kk

m

hi t

RDE X

,

, exp , (4)

where TFPhi,t = exp(tfphi,t) and Xk represents other variables: the logarithm of gross value for a
plant’s output (the scale variable), export dummy, industry-level dummies and year dummies.
Taking logarithms of (4) we obtain for dtfphi,t (≡ tfphi,t - tfphi,t-1) the representation:

dtfp rds croso rdm croshi t hi t hi t hi t hi, , , , ,= + + + +− − −α β β γ γ1 1 2 1 1 1 2 tt hi t k kk

m
rde X− − =

+ + ∑1 1 1
η θ, , (5)

where the small letters refer to the logarithmic values and the notation:

croso rds gaphi t hi t hi t, , ,− −≡ ×1 1 and

cros rdm gaphi t hi t hi t, , ,− −≡ ×1 1

is used for the interaction terms. We omit the variable gaphi,t from the model, because of the high
correlation coefficient (0.998) between the gap variable gaphi,t and the interaction variable
croshi,t-1. However, it is useful to note that it is possible to evaluate the convergence towards the
industry’s technological frontier on the basis of coefficient g2 and the variation of the variables
rdmhi,t-1 and gaphi,t in croshi,t-1.

We formulate the following variables to test how the productivity impacts either from the
plant’s own R&D or from the external R&D evolve as a function of the gap from the industry’s
technological frontier:

croso rds ghi t hi t25 251 1, ,− −≡ ×

croso rds ghi t hi t50 501 1, ,− −≡ ×

croso rds ghi t hi t75 751 1, , ,− −≡ ×
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where g25 = 1, when gap < the 25th percentile of gap. Otherwise g25 = 0. g50 = 1, when gap
� the 25th percentile and gap < the 50th percentile. Otherwise g50 = 0. g75 = 1, when gap �
the 50th percentile and gap < the 75th percentile. Otherwise g75 = 0.

We also define:

cros rdm ghi t hi t25 251 1, ,− −≡ ×

cros rdm ghi t hi t50 501 1, ,− −≡ ×

cros rdm ghi t hi t75 751 1, , .− −≡ ×

The nonlinear transformation standardizes the gap variable as belonging to the unit interval
in each NACE three-digit industry. It also divides the unit interval into percentiles. On the other
hand, the gap variable in the linear model is a logarithmic transformation of the productivity
index. Its range is allowed to vary from one industry to another. This specification is useful as
long as the industries are genuinely different.

We formulate the nonlinear model for total factor productivity as follows:

dtfp rds croso crosohi t hi t hi t hi t, , , ,= + + +− − −α β β β1 1 225 1 250 125 50 ++ + +

+
− −

−

β γ

γ γ
275 1 1 1

225 1 250
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25 5
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cros cros

hi t hi t

hi t

, ,

, 00 751 275 1 1 1hi t hi t hi t k kk

m
cros rde X, , , .− − − =

+ + + ∑γ η θ (6)

In Equation (6), the impact of a plant’s own R&D in the gap which is below the 25th
percentile is indicated by b1 + b225. The coefficient b1 shows how much a plant’s own R&D
affects productivity when the gap is above the 75th percentile. The interpretations for the other
coefficients related to the external R&D follow a similar pattern.

We also pay attention to the net effects, which reveal the productivity impact of the gap
variable gaphi,t. When, for example, b1 and b2 have different signs, the linear model specifies a
threshold value for gaphi,t above which the combined effect of b1rdshi,t-1 + b2crosohi,t-1 has a
positive productivity impact independent of the value of rdshi,t-1. To test the existence of
nonlinearities,13 we estimate a specification (6) which makes it possible to find whether hypoth-
eses 3 and 6 can be confirmed.

The verification of Hypothesis 1 is not straightforward. In Equation (5) it depends both on
the signs of the coefficients b2 and g2 and on the variation of the gap variable in the interaction
variables crosohi,t-1 and croshi,t-1. The other hypotheses give unambiguous predictions for the
signs of the coefficients in Equation (5).

• According to Hypothesis 2, in (5) b1 > 0 and the net effect b1 ¥ rds + b2 ¥ croso is, on average,
positive. In (6) we expect that the effects (b 1, b 1 + b 2j, j = 25, 50, 75) are, on average, positive.

• According to Hypothesis 3, b 2 < 0 in (4). In (6) we expect that b 225 > 0. Thus, b 225 > b 250

or at least b 225 > b 275.
• According to Hypothesis 4, h > 0.
• According to Hypothesis 5, g1 > 0 or, at least, the net effect g1 ¥ rdm + g2 ¥ cros is, on average,

positive in (5). In (6) we expect that the effects (g 1, g 1 + g 2j , j = 25, 50, 75) are, on average,
positive.

• According to Hypothesis 6, g 2 > 0 in (5) and in (6) g 225 < g 250 < g 275 < g 2.

13 Estimating the quadratic model or using threshold regression techniques, Girma (2005) discovered nonlinear
threshold effects. In the quadratic model the interaction between FDI in the region and absorptive capacity (the gap from
the technological frontier) had a nonlinear U-shaped impact on output.
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We also explore the determination of labour productivity. The gap variable is as follows

gapl maxlp lphi t k t hi t, , ,= −

The corresponding interaction variables crosolhi,t-1 and croslhi,t-1 are defined as follows:

crosol rds gaplhi t hi t hi t, , ,− −≡ ×1 1

crosl rdm gaplhi t hi t hi t, , , .− −≡ ×1 1

Thus, we estimate the linear equation of the form:

dlp rds crosol rdm croslhi t hi t hi t hi t hi, , , ,= + + + +− − −α β β γ γ1 1 2 1 1 1 2 ,, , .t hi t k kk

m
rde X− − =

+ + ∑1 1 1
η θ (7)

We also specify a nonlinear equation for labour productivity which is principally the same
as Equation (6).

4.5 Estimation methods

We estimate all models first with ordinary least squares (OLS). To weaken the potential impact
of endogeneity of the explanatory variables on the estimates, the key variables of interest are
lagged by one year. The fact that R&D variables are stocks also weakens the possible endoge-
neity problem.

Furthermore, to tackle the possible endogeneity bias we use the method of instrumental
variables to estimate Equations (5) and (7). We apply a generalized two-stage least squares
(G2SLS) estimation with random effects. The plant’s own R&D (rdshi,t-1), the interaction
variables crosohi,t-1 and croshi,t-1 and gross value for a plant’s output (lagged by one year) are
treated as endogenous variables. Endogenous variables lagged by two years – which are the
plant’s own R&D (rdshi,t-2), both the interaction variables (in Equation (5) croshi,t-2 and crosohi,t-2)
and gross value for a plant’s output – are used as instruments. The additional instruments (using
the notation of Equation 5) are the squared variables (croshi,t-2 ¥ gaphi,t-2 and crosohi,t-2 ¥ gaphi,t-2),
other firms’ R&D (rdmhi,t-2), R&D in the parent firm’s other plants (rdehi,t-2), the capital stock
lagged by two years and two industry-structure variables lagged by one year. The industry-
structure variables are the total number of plants in other firms in the same three-digit industry
and the total number of the parent firm’s other plants in the same three-digit industry.14 The c2

statistics clearly show that the instruments have substantial power in the first-stage regressions
(Appendix A2). Therefore, the instruments are relevant, based on the evidence. The other
variables in the first-stage regressions are the following exogenous variables: other firms’ R&D
(rdmhi,t-1), R&D in the parent firm’s other plants (rdehi,t-1), export dummy (lagged by one year),
and a full set of indicators for years and industries.15

In the nonlinear model (6) the gap is converted into a dummy variable from the index which
belongs to the interval [0, 1]. This makes it rather difficult to endogenize the interaction variables
of the plant’s own R&D. However, the use of dummies in the specification of the interaction
variables decreases the possible correlation between the interaction variables and the error term.
Thus, the need to endogenize is evidently smaller. On the other hand, because the total produc-

14 The use of these variables as instruments can be motivated, based on the results obtained in the study (Lehto 2008),
which analysed how the industrial structure – in terms of the number of potential competitors and clients – affects a
firm’s decision to invest in R&D.

15 The models contain 12 industry indicators.
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tivity effect of the plant’s own R&D depends on its own R&D variable and the interaction
variables, one cannot endogenize the plant’s own R&D variable separately. For these reasons,
we estimate the non-linear models only by using regular OLS.

5 Results

We report the estimates for the change in total factor productivity and labour productivity from
the linear models in Table 1.16 It is useful to note that total factor productivity may evolve
differently from labour productivity when capital is used to replace labour or when the cost share
of capital changes because of changes in relative prices. The standard deviation of the labour
productivity level is smaller than the standard deviation of the total factor productivity level.
This may reflect problems in the accurate assessment of capital input and user cost. Despite this,
the main effects of interest are more or less the same for both total factor productivity and labour
productivity.

We find that the plant’s own R&D has a positive and statistically significant impact, on
average, on total factor productivity in the specifications of Table 1. This is in line with the
results reported in Griffith et al. (2004). The same observation applies to the effect of the plant’s
own R&D on labour productivity in the OLS specification in Table 1. In the OLS model for total
factor productivity in Table 1, the net effect of the plant’s own R&D – which also takes into

16 Descriptive statistics for the variables are documented in Appendix A1. The estimation results from the first-stage
regressions for the IV estimates are reported in Appendix A2.

Table 1. The impact of R&D on the change in a plant’s total factor productivity (Dtfp) and labour productivity
(Dlp) in the linear models

OLS G2SLS, Random effects

Total factor
productivity

Labour
productivity

Total factor
productivity

Labour
productivity

Own R&Dt-1 0.0078*** 0.0062*** 0.0034*** -0.0003
(0.0009) (0.0007) (0.0013) (0.0011)

Own R&Dt -1 ¥ gapt-1 -0.0032*** -0.0044*** -0.0009 0.0009
(0.0005) (0.0005) (0.0007) (0.0009)

R&D in parent firm’s other plantst-1 0.0023*** 0.0025*** 0.0018** 0.0009
(0.0008) (0.0006) (0.0009) (0.0007)

Other firms’ R&Dt -1 0.0037 -0.0063 -0.0020 -0.0019
(0.0058) (0.0038) (0.0062) (0.0049)

Other firms’ R&Dt -1 ¥ gapt -1 0.0077** 0.0110*** 0.0043*** 0.0023***
(0.0003) (0.0003) (0.0004) (0.0005)

Gross value of plant’s outputt-1 -0.0186*** 0.0052*** -0.0047 0.0058**
(0.0033) (0.0022) (0.0037) (0.0029)

Export dummyt-1 0.0515*** 0.0405*** 0.0207** 0.0089
(0.0093) (0.0059) (0.0101) (0.0080)

Year dummies Yes Yes Yes Yes
Industry-level dummies Yes Yes Yes Yes

R2 within .. .. 0.0912 0.0798
R2 between .. .. 0.0329 0.0237
R2 overall .. .. 0.0756 0.0500
R2 adjusted 0.0952 0.0835 .. ..

Number of observations 17,886 23,750 14,810 15,083

Notes: Standard errors in parentheses: ** significant at 5%, *** significant at 1%.
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account the impact of the interaction variable – is positive for almost all values of the gap
variable (gaphi,t). The estimates suggest that only for the most inefficient plants, whose gap is
above the 94th percentile, is the net effect negative.

The quantitative magnitude of the estimated direct effects of the plant’s own R&D seems to
be rather modest at first sight. For example, the coefficient of the plant’s own R&D is 0.008
(Table 1, Column 1). This implies that as R&D increases by 1 percent, it increases the growth
rate of total factor productivity by 0.008 percentage points. However, it is useful to note that
R&D’s share of the firm’s total costs is, on average, small. Thus, there is a large underlying
variation in the plants’ R&D stocks. In particular, for over half of all plants the R&D stock is
zero. In contrast, for some other plants in the data it is very large. Hence, substantial relative
increases in R&D expenditures and even in the R&D stocks are common. Accordingly, doubling
the R&D stock increases total factor productivity growth by 0.8 percentage points. This is not
a small change, because the mean annual growth rate of total factor productivity is 3.8 percent.

We also discover that the impact of the plant’s own R&D on total factor productivity and
labour productivity decreases as the gap from the industry’s technological frontier grows. This
conclusion is based on the negative coefficient for the interaction variable (own R&Dt-1 ¥ gapt-1)
which prevails in the OLS models. This finding is parallel to the result obtained by Vanden-
bussche et al. (2006).17 Furthermore, we obtain evidence that the effect of a parent firm’s
(geographic) distance-weighted R&D stock is positive and statistically significant in both
models for total factor productivity and in the OLS model for labour productivity.

According to the estimation results, the effect of other firms’ (geographic) distance-
weighted R&D stock does not differ statistically from zero in the linear models of Table 1.
However, the indirect effect of other firms’ distance-weighted R&D stock – being conditional on
the gap from the technological frontier – tends to be positive and statistically significant. The
pattern is robust, because it prevails in all models of Table 1. We also discover that other firms’
R&D stock increases productivity when a plant is located far away from the industry’s techno-
logical frontier. This result, which confirms Hypothesis 6, is also valid in the G2SLS model.

The results from the nonlinear models are reported in Table 2. The coefficients for a plant’s
own R&D and for the interaction variables reveal that a plant’s own R&D’s impact on total
factor productivity and labour productivity is largest when the plant is located close to the
industry’s technological frontier. (The gap from it is below the 25th percentile.) The impact also
weakens when a plant is located far away from the technological frontier. In the models for
labour productivity (Table 2, column 2) the productivity impact of a plant’s own R&D is also
largest for the most efficient units and smallest for the most inefficient plants. These results
verify Hypothesis 3.

Other firms’ R&D affects productivity in accordance with Hypothesis 6 in the nonlinear
models of Table 2. The external R&D’s impact on total factor productivity and labour produc-
tivity is largest for the most inefficient plants. It is also interesting to note that the impact is
diluted when a plant becomes more efficient. Specifically, the impact is roughly zero for the
most efficient plants.

Table 3 (Panel A) describes the impact of other firms’ R&D on total factor productivity
growth by using the coefficient of 0.0043 for the CROS variable (Table 1, column 3). Given a
plant’s gap from the technological frontier, an increase in other firms’ R&D stock from the
minimum of the industry to the maximum of the industry increases the growth rate of total factor
productivity by 1.8 percentage points when the gap from the industry’s technological frontier is
large (i.e., a plant is located in the 80th percentile). However, the impact becomes smaller when
the gap narrows. Given a plant’s gap from the industry’s technological frontier, the shift from the

17 In their empirical specifications the number of completed years of tertiary education is used as a proxy for
innovative activity. We use the plant’s own R&D, instead.
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minimum value to the maximum value or from the minimum value to the average value in other
firms’ R&D produces, in all specifications, a significant positive impact on total factor produc-
tivity growth. These results reveal that the spillover effects can be of a considerable size.

Table 3 (Panel B) illustrates the impact of a plant’s gap from the industry’s technological
frontier on total factor productivity growth by using the coefficient of 0.0043 for the CROS
variable. The results show that given other firms’ R&D level, the gap variable has a substantial
positive impact on productivity that is independent of the level of other firms’ R&D. This reveals
the convergence effect in productivity. It points out that inefficient plants in all regions tend to
converge towards the productivity level of the efficient plants. Thus, we are able to confirm the
findings in Griffith et al. (2004) and Vandenbussche et al. (2006) through the use of compre-
hensive plant-level data. From Table 3 (Panel B) we also observe that a big leap in the gap can
create a 0.5-1.5 percentage points larger productivity impact in the regions where other firms’
R&D is concentrated (the 80th percentile row) compared with the regions that lack other firms’
R&D (the 20th percentile row).

It is also useful to note that the interaction variable CROSO obtains an opposite impact on
the convergence tendency discussed above, for example, in the OLS model in the first column
of Table 1, where the coefficient of CROSO is negative. This impact dilutes some of the power
of the convergence tendency. However, it does not change its overall direction.

Table 2. The impact of R&D on the change in a plant’s total factor productivity (Dtfp) and labour productivity
(Dlp) in the nonlinear models

OLS

Total factor
productivity

Labour
productivity

Own R&Dt-1 0.0008 -0.0026
(0.0011) (0.0006)

Own R&Dt-1 ¥ gapt-1 (with gap below the 25th percentile) 0.0044*** 0.0033***
(0.0016) (0.0009)

Own R&Dt-1 ¥ gapt-1 (with gap above the 25th percentile and below the 50th percentile) 0.0026* 0.0011
(0.0015) (0.0010)

Own R&Dt-1¥ gapt-1 (with gap above the 50th percentile and below the 75th percentile) 0.0012 0.0020**
(0.0015) (0.0009)

R&D in parent firm’s other plantst-1 0.0039*** 0.0033***
(0.0008) (0.0006)

Other firms’ R&Dt-1 0.0224*** 0.0103***
(0.0059) (0.0039)

Other firms’ R&Dt-1 ¥ gapt-1 (with gap below the 25th percentile) -0.0206*** -0.0104***
(0.0008) (0.0005)

Other firms’ R&Dt-1 ¥ gapt-1 -0.0133*** -0.0042***
(with gap above the 25th percentile and below the 50th percentile) (0.0008) (0.0005)
Other firms’ R&Dt-1 ¥ gapt-1 -0.0091*** -0.0023***
(with gap above the 50th percentile and below the 75th percentile) (0.0008) (0.0004)
Gross value of plant’s outputt-1 -0.0044** 0.0004

(0.0032) (0.0022)
Export dummyt-1 0.0236** 0.0132**

(0.0094) (0.0060)

Year dummies Yes Yes
Industry-level dummies Yes Yes

R2 adjusted 0.0908 0.0355

Number of observations 17,886 23,750

Notes: Standard errors in parentheses: * significant at 10%, ** significant at 5%, *** significant at 1%.
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6 The robustness of the results and geographical proximity

The high correlation coefficient of 0.998 between the original gap variable (gaphi,t) and the
interaction variable (croshi,t) leads to biased estimates. We thus omitted the gap variable from the
linear OLS regressions. For the same reason, the gap dummies g25, g50 and g75 were not
included in the nonlinear regression for total factor productivity. The same applies to the
estimation of models for labour productivity. If the interaction variable for the external R&D
were replaced by the gap variables (gaphi,t or dummies g25, g50 and g75), the gap from the
industry’s technological frontier would have a statistically significant positive impact on pro-
ductivity change. The external R&D’s productivity impact would also be positive and of the
same size as its impact is, on average, in the models of Tables 1 and 2. If, on the other hand, the
gap variables were included in the models of Tables 1 and 2 the interaction variable for the
external R&D would be statistically insignificant. These results leave us somewhat uncertain
about the existence and conditionality of the external R&D’s productivity impact.

We examined this matter more closely by the following experiment: the original external
R&D variable – which gives greater weight for R&D locating close by – was replaced by the R&D
stock which gives greater weight for R&D locating far away. The new variable is an R&D
aggregate for all the other firms minus the original external R&D variable.18After this replacement
the productivity impact of the external R&D variable is negative. We also found that the declining
pattern of the impact as a function of the gap from the technological frontier breaks down.
Therefore, the impact for the most inefficient plants is no longer the largest. This experiment
clearly demonstrates that geographically-determined weights in the external R&D variable make

18 We cannot omit the geographical weights of the original variable for the external R&D, because the variable would
be the same for each plant. Without any cross-sectional variation it would be impossible to identify the productivity
impacts of the external R&D.

Table 3. The impact of other firms’ R&D

Panel A

Gap from the industry’s
technological frontier

Other firms’ R&D, the
difference between

maximum and minimum

Other firms’ R&D, the
difference between average

and minimum

Other firms’ R&D, the
difference between the 80th

percentile and the 20th
percentile

20th percentile 0.99 0.47 0.40
50th percentile 1.49 0.67 0.57
80th percentile 1.83 0.88 0.76

Panel B

Other firms’ R&D Gap, the difference between
maximum and minimum

Gap, the difference between
average and minimum

Gap, the difference between
the 80th percentile and the

20th percentile

20th percentile 23.42 9.80 6.22
50th percentile 24.11 10.08 6.39
80th percentile 24.80 10.37 6.58

Notes: Panel A shows the effect of other firms’ R&D on the growth rate of total factor productivity, given a plant’s gap
from the industry’s technological frontier and using the coefficient of 0.0043 for the CROS variable. Panel B shows the
effect of a plant’s gap from the technological frontier on the growth rate of total factor productivity, given other firms’
level of R&D and using the coefficient of 0.0043 for the CROS variable. The estimates are presented as averages of all
plants, percentage points. (Percentiles, the minimum and maximum values and averages are calculated yearly from each
three-digit NACE.)
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sense and that the original external R&D variable does not break the productivity pattern which
the gap variable alone generates. These results reveal that the pattern described in Hypothesis 6
constitutes only a part of the overall convergence tendency of Hypothesis 1. According to
Hypothesis 1, the most inefficient plants tend to converge towards the industry’s technological
frontier. This points out that they have more potential to absorb all forms of existing knowledge
than other plants. For this reason, other firms’ R&D stock that is located close by is merely a part
of the larger knowledge base to which R&D stock that is located far away does not belong.

We also examined the relevance of geographically-determined weights by replacing the
original R&D variable for the parent firm’s other plants by the new variable which does not
weight the other plant’s R&D according to their geographical location. These results show that
the original coefficient for this variable, which is 0.0023 (Table 1, Column 1), turned out to be
0.0014, and 0.0018 (Table 1, Column 3) turned out to be 0.0010. Thus, being geographically
close also seems to be relevant within multi-plant firms.

7 Conclusions

The paper examines the productivity impact of a plant’s own R&D as well as the productivity
impacts of other firms’ and a plant’s parent firm’s (geographic) distance-weighted R&D stocks.
We also ask whether the two first-mentioned of these impacts are conditional on the gap of a
plant’s productivity from the industry’s technological frontier. The paper uses comprehensive
plant-level data. R&D is specified as an accumulated stock from the previous R&D investments.
The results reveal that a plant’s own R&D and a parent firm’s R&D have a positive productivity
impact. The impact of a plant’s own R&D also decreases as the gap from the industry’s
technological frontier grows. This means that the plant’s own R&D is, on average, used for
innovative activity. Furthermore, the productivity impact of other firms’ distance-weighted
R&D is, on average, positive. However, this impact increases as the gap from the technological
frontier grows. Therefore, external R&D is used to absorb existing knowledge. These results are
novel in the literature.

That we could obtain these results owes much to the plant-level character of the data set. The
studies that use aggregate data on countries and industries cannot make a distinction between the
plant’s own activity and other plants’ innovation activity. However, this distinction is crucial in
order to test the existence of different impacts of the plant’s own and other plants’ R&D activity.
For example, Griffith et al. (2004) analysed two-digit industry-level data and found that the
coefficient for the interaction variable (R&D ¥ relative efficiency) was negative, which in their
case implied that the productivity impact of an industry’s R&D is smaller the closer the industry
is to (the world’s) technological frontier. Griffith et al. (2004) argue that industry’s own R&D
represents absorptive capacity rather than ability to make innovations.

Our findings carry important policy lessons. The results point out that other firms’ R&D is
an essential part of the existing knowledge stock, which can be used to improve a firm’s own
performance. On the other hand, a firm’s own R&D is largely used to create new knowledge that
cannot be extracted from the other firms. The fact that all plants tend to converge towards the
industry’s technological frontier despite the size of external R&D spillovers implies that there
are real opportunities for convergence even for those firms that are located in remote, less
developed low-productivity regions. Thus, R&D policies should be used to improve the oppor-
tunities of those firms to learn from the frontier firms.
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Appendix A1

Descriptive statistics

Number of observations Mean Standard deviation Minimum value Maximum value

Dtfp 15,030 0.038 0.450 -4.236 3.869
Dlp 15,230 0.027 0.351 -9.822 9.547
Gap 15,186 1.420 1.162 0 20.908
Gapl 15,692 1.095 0.695 0 9.360
Croso 15,186 8.961 13.662 0 153.75
Crosol 15,692 6.573 13.663 0 77.505
Square of croso 15,186 266.964 1,045.257 0 23,639.06
Square of crosol 15,692 116.631 244.958 0 6,007.034
Rds 15,800 6.644 6.366 0 20.277
Rde 15,800 3.652 4.713 0 17.889
Rdm 15,800 17.317 0.692 14.812 18.961
Cros 15,186 24.524 19.915 0 388.38
Crosl 15,692 18.959 12.051 0 170.92
Square of cros 15,186 997.996 2,679.483 0 150,836.5
Square of crosl 15,692 504.655 685.333 0 29,214.55

Appendix A2

OLS specifications for the instrumented variables in the models of Table 1 (after taking loga-
rithm of R&D variables, gross value of a plant’s output, fixed capital and the number of firms)

Own R&Dt-1 Own R&Dt-1 ¥ gapt-1 Other firms’
R&Dt-1 ¥ gapt-1

Gross value of
plant’s outputt-1

Own R&Dt-2 0.9679*** 0.1739*** -0.2446*** 0.0012**
(0.0034) (0.0215) (0.0355) (0.0006)

Own R&Dt-2 ¥ gapt-2 -0.0001 0.9922*** 0.2638*** 0.0001
(0.0024) (0.0151) (0.0250) (0.0004)

Square of own R&Dt-2 ¥ gapt-2 -3.3e-05 -0.0685*** -0.0582*** -2.5e-05
(0.0003) (0.0017) (0.0029) (4.3-05)
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Appendix A2 Continued

Own R&Dt-1 Own R&Dt-1 ¥ gapt-1 Other firms’
R&Dt-1 ¥ gapt-1

Gross value of
plant’s outputt-1

R&D in parent firm’s other plantst-1 0.0081 -0.0267 -0.0936 0.0014
(0.0080) (0.0502) (0.0829) (0.0014)

R&D in parent firm’s other plantst-2 0.0080 0.0731 0.0910 0.0004
(0.0080) (0.0501) (0.0827) (0.0014)

Other firms’ R&Dt-1 -0.3650 -3.7043* -8.4455** -0.0024
(0.3426) (2.1408) (3.5308) (0.0614)

Other firms’ R&Dt-2 0.3778 3.2825 8.1392** -0.0022
(0.3411) (2.1315) (3.5154) (0.0611)

Other firms’ R&Dt-1 ¥ gapt-2 0.0005 -0.0457*** 0.6244*** 0.0013***
(0.0012) (0.0075) (0.0123) (0.0002)

Square of other firms’ R&Dt-1 ¥ gapt-1 -3.0e-06 0.0019*** -0.0129*** -2.5e-05
(0.0001) (0.0004) (0.0007) (1.3e-05)

Gross value of plant’s outputt-2 0.0878*** 0.0236 -1.1629*** 0.9633***
(0.0163 (0.1019) (0.1680) (0.0029)

Export dummyt-1 0.1165*** -0.4862** -1.9630*** 0.0330***
(0.0315) (0.1968) (0.3246) (0.0056)

Fixed capitalt-1 0.0192 0.6728*** 2.0848*** 0.0104***
(0.0124) (0.0777) (0.1281) (0.0022)

Number of other firms’ plants in the
same 3-digit industryt-1

0.0206 0.9081*** 2.1455*** -0.0039
(0.0139) (0.0867) (0.1430) (0.0025)

Number of own firm’s other plants in
the same 3-digit industryt-1

-0.1112*** 0.1271 1.4586*** -0.0129***
(0.0241) (0.1506) (0.2484) (0.0043)

Year dummies Yes Yes Yes Yes
Industry-level dummies Yes Yes Yes Yes

Wald c2 statistics 313,244 24,959 16,421 444,270
(p > c2) (0.0000) (0.0000) (0.0000) (0.0000)

Number of observations 14,810 14,810 14,810 14,810

Notes: Standard errors in parentheses: * significant at 10%, ** significant at 5%, *** significant at 1%.
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Resumen. Este artículo se pregunta si los impactos de I+D en la productividad están condicio-
nados por la brecha entre la productividad de una planta industrial y la frontera tecnológica del
sector. Los resultados muestran que la I+D propia de una planta y la I+D de la empresa matriz
tienen un impacto de productividad positivo. El impacto de la I+D propia de una planta
disminuye a medida que se ensancha la distancia con la frontera tecnológica del sector. Además,
el impacto de productividad de la I+D de otras empresas ponderado en función de la distancia
(geográfica) es, en promedio, positivo. Sin embargo, este impacto aumenta a medida que lo hace
la brecha con la frontera tecnológica.
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